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ABSTRACT. Aalen's additive risk model allows the influence of covariates on a hazard

function to vary over time, and to do so in a different fashion for each covariate. Although

allowing greater flexibility than a Cox model, which has a more parsimonious temporal structure,

the number of covariates that can be handled by Aalen's model is quite limited. One way around

this difficulty is to impose some a priori structure on the form of the model, thereby reducing the

number of functions to be estimated. In this paper we introduce a partly parametric version of

Aalen's model in which only a small number of the covariates are selected to have their influence

vary nonparametrically over time, and the influence of the remaining covariates is restricted to be

constant in time. Efficient procedures for fitting this new model are developed and studied. The

approach is applied to data from the British Medical Research Council's myelomatosis trials.

MSC 1991 subject classifications. Primary: 62G05; Secondary: 62M09.
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1 Introduction

Aalen (1980) proposed the following additive model for the intensity of a count-

ing process:

A(tlz) = a(t)'z,

where z is a p-vector of covariates and a is a p-vector of unknown functions of

time. The first component of z may be set to 1 to allow for a baseline hazard.
More recently estimation in this model has been studied by Huffer and McKeague
(1991) and McKeague (1988a, 1988b). Greenwood and Wefelmeyer (1990, 1991) and

Sasieni (1992) have shown that the Huffer-McKeague estimator is asymptotically
efficient and that it is an approximate maximum likelihood type estimator. The
model has had only limited use in data analysis and primarily in data sets with
just a few covariates. Examples may be found in Aalen (1989), Mau (1986, 1988)
and Henderson and Milner (1991). One reason for the lack of use is that a separate
nonparametric function must be estimated in association with each covariate. As
a way of redressing this problem we here introduce a partly parametric version
of the additive risk model in which the effects of some covariates are assumed to
be constant in time. This restriction could be relaxed at some price by allowing
a parametric model for a component ai(.). Alternatively, by defining a new time

dependent covariate, z*(t) = z exp(-t) say, non-constant time effects could be fit
with this model directly.

Assume that the intensity at t for an individual with covariates x and z is given

by

)(tlx, z) = a(t)'x ± /Yz, (1.1)

with the covariates being q and p dimensional respectively. We are interested in

estimating P3 and the vector of 'cumulative hazards' A(.) = fo a(s) ds. If /3 were
known then one could use Aalen's least squares estimator for A(.) followed by the
Huffer-McKeague scheme to obtain an efficient estimator. Similarly, if a(.) were
known then one could estimate P3 by maximum likelihood. However, neither A nor
P3 are known and it is not obvious how to construct efficient estimates although,
intuitively, iterating between estimation of /3 and a should work. The appruach
used here is to look at the efficient score equation for /3 and to use this to obtain a
set of pseudo-normal equations. There are similarities with the approach used by

Sasieni (1992) to motivate the Huffer-McKeague estimator.
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Various authors, most recently Lin and Ying (1992), have considered the fol-

lowing additive analogue of Cox's (1972) proportional hazards model:

A(tlz) = ao(t) + /'z. (1.2)

This is a special case of the partly parametric additive risk model (1.1) obtained
by treating the baseline hazard function nonparametrically and all the covariates
parametrically. The temporal influence of each covariates is required to be constant,

so it is considerably less versatile than (1.1). However, this model, like the Cox
model, can be useful in the initial exploratory stages when there are a very large

number of covariates. In an application to real data (Section 4) we used (1.2) to
find the two most influential covariates, followed by (1.1) with one of the covariates
treated nonparametrically. This led to a much better fit than could be achieved by
either (1.2) or the Cox model.

The paper is organised as follows. In Section 2 we derive our efficient estima-

tors for P and A and discuss their practical implementation. In Section 3 we discuss
ways to refine a partly additive risk model and a diagnostic technique which can
give useful information about how much the estimates would change if an individual

observation were removed from the data set. An application to finding prognostic
factors for survival among myelomatosis patients is discussed in Section 4. Some
general discussion, comparing the new approach with the standard Cox model ap-
proach to regression analysis of censored survival data, is provided in Section 5.

The asymptotic distributions of the estimators are obtained in Section'6.

2 Semiparametric estimators

2.1 Notation and derivation of the estimators

Denote by (xi, zi, Ti, i) the observed covariates xi and zi, possibly censored
failure time Ti, and censoring indicator 6i, for the ith of n independent and identi-

cally distributed individuals: 6i = 1 if Ti is uncensored. In the usual survival set-up
with non-informative and conditionally independent censoring the log-likelihood for

A is

Z- {6 1 og A,(Ti)- J1[t<T.jIA(t)dt},

where the range of inLegration extends over the period of follow-up and Ai(t) =

A(tlxj,zi). Let Ni(t) = 1[T_<,,6,=< ] be the corresponding counting process and
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Mi(t) = Ni(t)-ft l[Ti>,]Ai(s)ds the associated martingale. Assume that A(-1x,z) is

bounded away from zero. Consider a one-dimensional parametric submodel, a(t) =

a(t; ,7), in which
ea(t) = b(t).977

Differentiating the log likelihood with respect to /3 and q we obtain the paramctric

score function:

6ZJA Zt dM1 t) Tz A~)d
{,6i(Ti) J1[t<T]-- )d

= cb=f bAt)'X dM (t)

i=1)

i~Zl

Setting i b = 0 yields

/= = (f Z' H W d1 N - f Z'WX dA), (2.1)

where Z = = (zXl[T>t],)... Nzno[Tw>t])', the n x n-matrix W is defined by
W(t) = diag(1/Aj(t)}, g(t) = (YN ).. ,N,,(t))' and X is defined like Z. Next,

4, =lb = f b(t)'X'W dM(t)

= f b'X'WdN - f b'X'WZP3 dt - f b'X'WX dA,

where M = (Ml,. . ., M,,)'.

Setting A i b = 0 for a sufficiently large collection of vector-valued functions b
implies that

A(t) = 10(X'WX) -'(X'W dN - X'WZ/3 ds).(.2

Substituting the right hand side of (2.2) into (2.1) and solving for 0 gives

4 = (f Z'HZ dt)-1 f Z'g dN, (2.3)

where H = W - WX(X'WX)-'X'W. Now ý is not an estimator since it depends

on ,A, which is unknown. However ý is the solution of 1; = 0, where 1ý is the efficient



score for 3, as shown in the Appendix. This implies that an estimator based on

(2.3), but with a consistent estimate of A replacing the unknown function, will

be efficient for the semiparametric model; see Bickel, Klaassen, Ritov and Wellner

(1992, Theorem 3.4.1).

The use of the identity matrix I in place of W gives an initial estimate of/3.

To construct an efficient estimator we propose two methods. These both replace W

by W = diag{1/Ai(-)} where Ai is some estimate of A,. The second method is more

appropriate when the dimension of / is large.

Method I:

(i) Fit the full Aalen model, A(tlx, z) = a(t)'x + 3(t)'z, and obtain an estimate W

of W from a historical kernel smoother, as in Huffer and McKeague (1991).

(ii) Find an estimate j of /3 by (2.3), using W in place of W.

(iii) Estimate A from (2.2) using W and 3 in place of W and/3.

Method II:

(i) Estimate / inefficiently from (2.3) using I in place of W.
(ii) Estimate A inefficiently from (2.2) using I in place of W and the estimate of

/3 from (i), and then use historical kernel smoothing to estimate a.
(iii) Obtain an estimate W of W using the estimates of / and a from (i) and (ii).

(iv) Obtain final estimates A and using (2.2) and (2.3) with W in place of W.

In our computer implementation we have used method II with a Ai that is
explicitly defined in subsection 2.4. Notice that Z and X are functions of t and

that, provided the covariates are predictable, the same estimating equations (2.2)

and (2.3) could be used with time-dependent covariates.

The gain in efficiency of the two-step estimator using W compared to the initial
estimator using I will depend on the heterogeneity of the hazard of individuals

in the sample. For instance, if all individuals are at equal risk, so that none of

the covariates are related to survival, then there is no efficiency gain. In general,

however, there will be a small gain. Huffer and McKeague (1991) investigated by

simulation the asymptotic relative efficiency of the OLS estimator in the Aalen

model and found it to be between 72% and 98% depending on the distribution of

the covariates and-the magnitude of the risk associated with them. The situation is

somewhat more complicated here because our estimate of / depends on the weights

for all individuals at risk at each failure time. In any given situation one can however
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fairly easily examine the efficiency gain by comparing the asymptotic covariance
matrices or more thoroughly via a bootstrap simulation.

2.2 Estimating the asymptotic covariance matrix

The asymptotic distribution of 3 and A is the same for methods I and II. Stan-

dard counting process techniques (Section 6) can be used to show that n'/ 2 (4 - fl)

converges in distribution to a p-variate normal with mean zero and with covariance

matrix which can be consistently estimated by 2-1, where 2 = n- 1 f Z'HZ dt.

Here H is the estimated version of H obtained by replacing W by a consistent esti-

mate W. The same approach shows that nl/2 (A - A) converges in distribution to
a q-variate Gaussian process with mean zero and with a covariance function which,

as a function of s and t, can be consistently estimated by

n Z _• AL A -U1 + (s)• -lb(t)', (2.4)
u<SAt

where A. is the jump in A at time u and

t= j(X 'WX)-X'WZds.

The first term in (2.4) is a consistent estimate of the covariance function for the

model in which only the nonparametric terms are non-zero; the second term repre-

sents the contribution from the parametric part of the model.

2.3 Grouped data version

Although evaluation of the estimates is fast on even a small computer, one may

wish to fit a grouped data version of the model in the exploratory stage of model

building. For most purposes grouping the time axis into about ten intervals will be

adequate and this will greatly reduce the computation. The grouped data model

may be written
K

A(tIX, Z) = a(i)X1T.(t) + #3'Z,

where the time axis has been divided into K intervals Ii,..., 2IK with Ii = [-ri- , ri)

and T"0 = 0. One approach to estimation treats this as a parametric linear model

with Kq + p parameters, but even for moderately large K it makes sense to take
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into account the orthogonality of the dummy covariate blocks x1l7 (t), i = 1,.., K.

Let k(u) denote the index such that u E "k(u). Proceeding as before one has

k(u)-i

A(u) = a(')T' + ak(u)(U - •ku)-l)
s=l

and

a = ( X'WX dt) jI (X'WdN - X'WZ/3 du).

Thus instead of having to solve a system of (p + q) linear equations at each failure
time, one has only to solve such a system for each time interval.

2.4 The choice of weights

Although asymptotically one may use any consistent Ai obtained via method
I or II to estimate the efficient weights, in practice the choice of Ai needs to be

made with some care. It is a good idea to compare the weighted estimates with

the unweighted cnes, since both are consistent on the model, and this can provide

a check of whether the weights are wildly off-target.

The implementation that we have used calculates Ai as follows. Let T(i) denote
the ith ordered failure time, and set T(o) = 0. Given initial estimates A and /, we

estimate a(t) for t > T(d) by

&(t) = A(T(,))- A(T(._d)) when T(,) < t < Ti+,).
T(,) - T(i-d)

We have found that taking d between n1 /2 and 4n"/ 2 works well for n between 100

and 1000. Notice that Ai(t) = &(t)'xi + fI'z, estimates Ai(t), but it cannot always

be used to estimate the weights since it may be non-positive and it is undefined for

t < T(d). Instead, we use

(t= f max(A(t), ý,(t)) for t > T(d)
A(t) for t < T(d)

where A(t) is the average of Ai(t V T(d+l)) over all individuals i at risk at time t-.
We recommend taking e between 0.15 and 0.35 in defining the 'minimum allowable

hazard' JA(t). The examples in this paper are based on d = 50 and E = 0.25. Strictly

speaking, A, departs from methods I and II for t < T(d), but this will have negligible
effect provided that T(d) is small compared to the total length of follow-up.

7



Many variations on this recipe for A, are possible. For instance, the 'bandwidth'

for estimating & could be taken to be a fixed length of time or a fixed number of
uncensored failure times.

3 Model refinement and diagnostics

The most immediate problem faced when applying the partly parametric ad-
ditive risk model is in determining which of the covariates should be modeled non-

parametrically. There may be scientific reasons for wanting to include a particular
variable nonparametrically. It is possible that some factor will not be significant

when modeled parametrically even though it has a strong effect on survival, e.g., a
drug that is strongly toxic, but which helps those patients who survive the initial

period of toxicity. However, if there are a large number of covariates, then it is
advisable to start by treating at most a few of them nonparametrically and the rest

parametrically. It is generally sensible to include a nonparametric baseline. The
covariates having the most insignificant effects should then be dropped from the
model one-by-one. The next step would be to examine whether the influence of

each of the parametric covariates varies with time by treating each nonparamet-

rically and looking at the plot of Aj(t) along with the corresponding straight line

estimate t~i. These plots together with pointwise confidence intervals against time
will give some indication of the validity of the parametric assumptions and how
they are violated when they fail. This approach is illustrated by the example in
the following section. Other approaches are possible. For instance, one might fit a

separate Aalen model for each covariate, to get an initial idea of the variation of
the additive hazard with time, before aAempting multivariate modelling. Alterna-

tively, after selecting a partly parametric model, one might check to see if any of

the variables not included make a significant nonparametric contribution.

Influence residuals can give useful iiaformation about how much the estimates
would change if an individual observation were removed from the data set. For

fixed W, f as defined in (2.3) is an explicitly defined functional of the empirical

distribution function. Differentiating this functional and evaluating the derivative

at the empirical distribution gives the empirical influence curve (Cook and Weisberg,

1982, pp. 104-108). Straightforward differentiation and a little algebra yields

a~j = (f Z'HZdt)-1 f{zi - Z'WX(X'WX)-'xj} 4,7 dfi
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as the influence of the ith individual on /. Here .M/,(t) = Ni(t) - fo I[T._>,)](x dA +

/'zi ds) is the martingale residual for observation i. The effect of estimating W on

the influence curve for /3 is asymptotically negligible whenever the assumed model

holds. That is, if the influence curve is evaluated at a probability measure for a

partly additive Aalen model with covariates x and z then the above expression for

the 0/3i's will be correct to first order.

As in proportional hazards regression, the basic diagnostic building block is the

counting process martingale residual M&(-) (Barlow and Prentice, 1988; Therneau,

Grambsch and Fleming, 1990). A plot of the E Mi(t) against t can be used to
check for systematic lack of fit due to components not being allowed to vary freely

in time, as in (1.2). To investigate the role of individual covariates one may partition

the time axis into about ten ;ntervals [rj-p, rj) (j = 1,..., J) and for each j, plot
the increments .,(rj) - M(ri(j_ ) against covariates for individuals at risk at 7j-,.

Such plots are analogous to partial residual plots in the linear model and may detect
the need to transform a covariate. One can also check whether the additive risk

associated with a given covariate varies in time by comparing the J plots for that

covariate, after rescaling each by rj - rj-,.

4 Example

In this section we discuss the fitting of a partly parametric additive risk model
to data from the British Medical Research Council's (1984) fourth myelomatosis

trial. We analyzed survival data on 495 myelomatosis patients for whom presenta-

tion measurements included serum /2 microglobulin and haemoglobin. Percentiles
of these measurements are given in Table 1. In fitting the regression models, serum

32 microglobulin was transformed by log 10(.) to compensate for its skewness.
Several studies (e.g. Cuzick, Cooper and MacLennan, 1985) have indicated

that serum 82 microglobulin is of primary importance in predicting survival in
myelomatosis patients. However, a recent paper of Cuzick, De Stavola, Cooper,

Chapman and MacLennan (1990) suggests that its value is confined to the first two
years of follow-up. This claim was based on an analysis using separate proportional

hazards models for different follow-up intervals. Such an approach has limited

ability to model covariate effects that vary in their influence over time. We think
that it is more appropriate to apply a partly parametric additive risk model when

searching for such variations.

9



Table 1. Percentiles of serum /2 microglobulin and haemoglobin.

Covariate min 10 25 50 75 90 max

serum /32 0.3 2.3 3.3 5.7 9 22 76.7

haemoglobin 25 71 90 106 122 136 167

We initially treated the covariates parametrically and the baseline nonpara-

metrically, as in model (1.2). The Wald statistics for testing whether the corre-

sponding parameters are zero were 2.25 for serum 12 microglobulin and -3.24 for

haemoglobin. Thus there is strong evidence that both covariates are influential.

Next we considered the model with haemoglobin treated parametrically, and
the baseline hazard and serum /32 microglobulin treated nonparametrically. This
turned out to be our final model. Figures 1 and 2 show plots of the cumulative risks

for the two nonparametric terms; Figure 2 also contains the straight line estimate of

the cumulative risk for serum /2 microglobulin based on model (1.2). Note that in

the first three years the straight line falls outside the 95% confidence limits, strongly

suggesting that the influence of serum 02 microglobulin varies with time. Further
inspection of Figure 2 indicates a plateau in the nonparametric cumulative risk

estimate after about two years, which is consistent with the claim of Cuzick et al.

(1990) that serum /2 microglobulin is of primary importance in predicting survival
only within the first two years of follow-up. Haemoglobin treated parametrically

has significant influence (the Wald statistic is -3.13) and from Figure 3 we see that

its influence does not vary appreciably with time since the straight line estimate of
cumulative risk .s almost completely contained in the 95% confidence limits around

the nonparametric estimate based on the full Aalen model.

It is noticeable from Figure 2 that the confidence intervals inevitably become
wider with time. Suppose one looked at survival beyond 2 years: i.e., A(t) - A(2)

for t > 2. In the, way the intervals would have zero width at 2 years and would be

narrower at 5 years. There would be a second set of bands, identical to the ones

in Figure 2, for 0 to 2 years. It would seem sensible that the two sets of intervls

should be made wider to allow for the implicit multiple testing that is taking place:

(i) A(t) = tb for 0 < t < 2 and (ii) A(t) - A(2) = t - 2)b for 2 < t < 6.

10



For the purpose of predicting survival based on our final model, one can use

the estimate

StX, Z) = exp { - ' dA + z'ý3 ds)}

of the survival function S(tlx, z) = pr(T > tIx, z) at given values of the covariates.
In Figure 4 we have plotted the average predicted survival probabilities for groups
defined in terms of the lower/upper quartiles of the covariates. Note that patients
with low haemoglobin and high serum /2 microglobulin are at the highest risk,
whereas patients with high haemoglobin and low serum /2 microglobulin are at the

lowest risk.
A less than pleasing feature of the curves in Figure 4 is that they are not

monotone. Since each curve is an averaged estimates of survival functions it would
be sensible to take a monotone version as the final curve. This could easily be
achieved by isotonically regressing S(tlx, z) against t. We have not chosen to do
that here in order to show that the lack of monotonicity is only very slight. Indeed
an estimated survival curve with significantly increasing sections would indicate a
lack of fit, since it is known that on the model the estimate is consistent for the
true survival function.

As a rough check of goodness-of-fit it is useful to compare the various model
based estimates of survival probability with the local Kaplan-Meier estimate. In
Figure 5 we plot the local Kaplan-Meier estimate for the high haemoglobin and low
serum /32 microglobulin group (Hb > 122, serum /2 < 3.3) and compare it with the
average survival probabilities predicted by the different models. It appears that our
model offers a much better fit than either the Cox model or the Lin-Ying model.

In this example the relative efficiencies of our estimators compared to the OLS
estimators were 114% and 120% for the baseline and serum /2 cumulative hazard
functions at four years, and 112% for the parameter corresponding to haemoglobin.

[Insert Figures 1-5 about here]

Figure 1. Estimate of the baseline cumulative risk ( ) with 95% confidence
limits ( ---- ) based on the final model.

Figure 2. Estimate of the cumulative risk for serum /2 ( ) with correspond-
ing 95% confidence limits ( ----- ) based on the final model. The straight line

11



estimate is obtained from the model in which serum 02, as well as Hb, are treated

parametrically.

Figure 3. Estimate of the cumulative risk for Hb ( ) with corresponding

95% confidence limits ( ------- ) based on the "full" Aalen model. The straight line

estimate is obtained from the model with Hb treated parametrically and serum 12

and the baseline treated nonparametrically.

Figure 4. Average predicted survival probabilities according to risk group.

Figure 5. Local Kaplan-Meier estimate of survival probability for the high Hb/low

serum P2 group, compared with various model-based cstimates averaged over this

group.

We have also applied our approach to data on 559 patients from the British

Medical Research Council's fifth myelomatosis trial. In this case we used indi-

cators for treatment, sex and four age strata as covariates entering parametri-

cally. The treatment was a trial drug regimen that was compared to conventional

chemotherapy. The baseline and serum 12 were handled nonparametrically as be-

fore. Haemoglobin was tried parametrically, but did not turn out to be a significant

covariate, so was dropped from the model. The shape of the serum 32 cumulative

hazard curve, given in Figure 6, is remarkably similar to that in the fourth trial

(Figure 2): the straight line estimate again falls outside the 95% confidence inter-

vals and there appears to be a plateau after about 2.5 years. The curve is plotted

only up to 3.5 years, which is as far as we can go with data from the fifth trial.

Figure 7 justifies our handling of the treatment parametrically: the treatment effect

appears to be constant in time since the straight line falls within the 95% confidence

intervals for the nonparametric cumulative hazard.

[Insert Figures 6 and 7 about here]

Figure 6. Fifth myelomatosis trial based estimates of the cumulative risk for serum

#2; compare with Figure 1.

Figure 7. Fifth myelomatosis trial based estimates of the cumulative risk for the

treatment effect.
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The Wald statistic for testing for a treatment effect was -2.99, suggesting
that patients receiving the drug regimen had significantly better survival. At two

years, the predicted effect of treatment is to increase the probability of surviv.al
by approximately 30% over what it would be for an individual on conventional

chemotherapy.

5 Discussion

The standard method for regression analysis of survival data at present is

the proportional hazards model with exponential link function (Cox, 1972). Some
comparisons between this and the present model seem in order.

Consider first the simplest case of a single binary covariate representing two
samples. The nonparametric additive model permits nonparametric estimation of
the survival function in each sample separately. The Cox model permits a single

nonparametric baseline hazard function and assumes that the hazard, at any time
t, in one sample is always a common multiple of the hazard, at the same time t, in
the other sample. An additive model with a nonparametric baseline and parametric
covariate effect is similar to the Cox model, except that the difference between the
two hazard functions is constant over time (Table 2).

Table 2. Model assumptions for the two sample problem.

Aalen: 1\, A\2 unspecified

Cox: A2 (t) = 6OA(t), A1 unspecified

New: A2(t) = A\(t) + 0, A1 unspecified

More generally, comparison between the Cox and the partly parametric additive
model is simplest when the only nonparametric component is the baseline. In
that case the Cox model has A(tlz) = Ao(t)exp(f3'z) and the additive model has

A(tlz) = Ao(t) + /'z . Such models have been considered before (e.g., Cox and

Oakes, 1984, p.74).

The full flexibility of the semiparametric additive model is seen by comparing
it to the stratified Cox model. Given two one-dimensional of covariates, x and z,

one may describe the stratified Cox model by

A(tlx, z) = A(tlx) exp(#'z)
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A(tx= k) = Ak(t) assuming x E{1,2,..,K}

and the additive model by

A(tlx, z) = A(tlx) + /'z

A(tlx = k) = at'

= Ak(t), the kth component of a(t)

when x is a vector of K dummy variables.

It is possible to generalise the Cox model so that it is directly comparable to

our partly parametric Aalen model. Consider the Cox-type model

A(tlx, z) = Ao(t)exp(a(t)'x + 3'z),

with time-dependent coefficients a(t) and time-independent coefficients /. This is a

partly parametric version of a model studied by Zucker and Karr (1990). Note that

exp{•a(t)'(x 2 - xl)} can be interpreted as the time-specific relative risk between an

individual with covariates (X2 , z) and one with (xj, z). The unknown a and 1 can
be estimated via a histogram sieve approach: treat a as a step function, constant
on each of K intervals 1i that partition the follow-up period, cf. the grouped data

version of our model. This gives a standard Cox model problem with Kq + p

covariates defined by the Kq components of the x1z• and the p components of z.

Asymptotic theory, with K as well as n tending to infinity, for the resulting sieve
estimators can be developed along the lines of Murphy and Sen (1991), who studied
the fully time-dependent case. We shall not pursue this here, but we note that the

asymptotic theory is considerably more complicated to develop than with the partly

parametric additive risk model.

6 Asymptotic distributions

In this section we find the asymptotic distribution of our estimators f3 and A.
This is done under conditions stated in McKeague (1988a) or Huffer and McKeague

(1991); in particular, the covariates are assumed to be bounded and A(.Ix, z) is

assumed to be bounded away from zero. The follow-up period is taken to be a fixed
bounded interval.

We begin by noting that

VJ Z'dM Z'kdN~ JfZ'RX dA- J Z'HZ dt1
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= Z'H dN -JIZ'HZ dt1

since H is orthogonal to X. Hence

n112(4 -_ ) = (n-1 f Z'HZ dt) -n-1/ 2 J Z'H dM, (5.1)

provided the inverse matrix exists. This will allow us to obtain the asymptotic

distribution of 1 for any predictable W that is a uniformly consistent estimate of

W, via the martingale central limit theorem. For now suppose that the weights are
computed via method I, in which case W is predictable. The method II weights

are not predictable because they are a function of the initial estimate of 1, both
explicitly and through dependence on the initial estimate of ao, so some additional
work will be needed in that case.

Let Y = (X, Z). As a consequence of the independent and identically dis-
tributed replicates, n-1 Y'WY converges in probability to a nonrandom matrix

function uniformly over bounded time intervals. This function is assumed to be
nonsingular and smooth. We apply the martingale central limit theorem to the

martingale n- /2 fo Z'H dM, which has predictable variation

(n-1/2j Z'H dM) n~ ZTHW'l'Z ds.

Routine matrix algebra gives fHW-l', H _ H-. Also, n-Z'HR(W- 1 - W- 1 )HZ
converges uniformly in probability to zero, cf. McKeague (1988b, Lemma 4.3). Let

E denote the limit in probability of n- f Z'HZ dt. By uniform consistency of

k and boundedness of the covariates, the matrix n-1 f Z'HZ dt also converges in

probability to E. It follows from (5.1) that nl/ 2 (4 - 1) converges in distribution to
a mean zero multivariate normal with variance E-1.

From (2.2) and the definition of A,

n1/2(A - A) = n'/ 2 j(X'WX)-I X WdM (5.2)

- fo (X'WX)1 X'WZ dtn( -3 ),

provided the inverse matrix exists at all t; if not, an additional term of order op(l)

is required. Once again we can apply the martingale central limit theorem. The
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covariation between n1/2 fo(X'WX)-IX' WdM and n- 1/2 f ZHdM is

jo*(X'WX)-IX'WW-1 H'Z dt,

which converges in probability to a matrix of zeros, by the uniform consistency of
W and the orthogonality of H and X. This implies that the two terms on the right
side of (5.2) axe asymptotically independent. Let V denote the limit in probability
of n-1 X'WX. As in Huffer and McKeague (1991), the first term in (5.2) converges

in distribution to a Gaussian martingale m with covariation process f0 V-1 dt. This
is simply the limit of n1/ 2 (A - A) in the usual additive risk model in which P3 = 0.
It follows that n1/ 2((A - A) converges in distribution to m + k()•, where m and

Sare independent, ý is mean zero multivariate normal with variance E-1, and
O(t) = f V- 1 U ds where U is the limit in probability of n-1 X'WZ.

It remains to show that the above argument can be modified to allow for
the non-predictability of W when the weights are computed via method II. First
consider the last part of (5.1), n-1/2 f Z'H dM, each component of which can be

written in the form n

n-1/2 _ G, (l) dM, (5.3)

where Gi(#) = Gi(fl,t) is predictable, twice differentiable in P, and fl is the initial
estimate of fl. Taylor expanding Gi about the true f, we can express (5.3) as

n-/21 JGj(83) dvi, + n 1/2 (ý - fl)'n1 n 1  f JG3 (,3) dMi

+n1/in12 - MI)}'n.. di J(7!(*) dM}{I n /2(3 _ /3)1
where /* lies on the line segment between 8 and fl, and the dependence of /* on

t and i has been suppressed. The first term, having predictable integrands, can be
treated using the martingale central limit theorem as before. The second term is

easily shown to converge to zero in probability since /3 is n1/ 2-consistent and the in-
tegrand is predictable and uniformly bounded. The third term is also asymptotically

negligible since Gi(P) is uniformly bounded for P belonging to a neighbourhood of

8o. Note that we have been using the boundedness of covariates and the assumption
that A is bounded away from zero. A similar argument applies to the first term on

the right side of (5.2). We conclude that the asymptotic distribution of / and A is

the same for methods I and II.
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Appendix: The efficient score for/•

The efficient score for 0 is obtained by projecting the score ift onto the orthog-

onal complement of the tangent space spanned by the range of the score operator
lo. When n = 1, it will be given 1,y

Sz - b*(t)'x dM(tIx,z)
J A(t••Mz)

for some b* such that l* is orthogonal to i0 b for all b such that

E[6{b(T)'z/A(Tjx,z)}2 ] < o0.

Thus for all such b,

[J z - b*(t)'x d(t) b(t)'x dM(t)]
V A(tlx, z) M) (t Ix, z)

- E [,(z - b*(T)'x) b(T)'x]
A(Tlx, z) A(Tlx,z)

see, for example, Sasieni (1992, Lemma A.1). Hence

_r E[ Z1 IT,b = i] (E[ xx' IT,6 1] )-b*()' - ELA2(t-TX, Z) I A2(tlX, Z)

_- [r zx,' •>, (Er [ x1x-
- ,(t I, z) - ( (tI Xz) tT-t]] '

see Sasieni (1992, section 3).

Thus, for a sample of size n,

I; I Z'W dN - J(Z'WX)(X'WX)-X'WdN

- J Z'WX dA + J(Z'WX)(X'WXx'XWX dA

Z'WZ dt ,3 + J(Z'WX)(X'WXY1'X!WZ dt 0

=JZ'H dN- J ZHZ dtfl.

Solving l; = 0 for 3 gives (2.3).

We conclude that the estimators 3 and A.) discussed in this paper are asymp-

totically efficient for the semiparametric model (Bickel et. al., 1992).
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